Polynomier är matematiska ekvationer som innehåller variabler och konstanter. De kan också ha exponenter. Konstanterna och variablerna kombineras genom tillsats, medan varje term med konstanten och variabeln är kopplad till de andra termerna antingen genom tillsats eller subtraktion. Faktorering av polynomier är processen för att förenkla uttrycket genom uppdelning. För att faktorisera polynomier måste du bestämma om det är en binomial eller trinomial, förstå standardfaktureringsformaten, hitta den största gemensamma faktorn, hitta vilka siffror som motsvarar produkten och summan av de olika delarna av polynomet och sedan kontrollera din svar.
Bestäm om polynomet är ett binomialt eller ett trinomialt. En binomial har två termer och en trinomial har tre termer. Ett exempel på en binomial är 4x-12, och ett exempel på en trinomial är x ^ 2 + 6x + 9.
Förstå skillnaden mellan skillnaden mellan två perfekta rutor, summan av två perfekta kuber och skillnaden mellan två perfekta kuber. Dessa typer av polynomer är binomialer och har ett speciellt format för fabrikering. Exempelvis är x ^ 2-y ^ 2 skillnaden mellan två perfekta rutor. Du faktorerar det genom att hitta kvadratroten för varje term, subtrahera dem i en uppsättning parenteser och lägga till dem i den andra, till exempel (x + y) (x-y). Polynomet x ^ 3-y ^ 3 är skillnaden mellan två perfekta kuber. När du har hittat kubroten för varje term sätter du den i formatet (x-y) (x ^ 2 + xy + y ^ 2). Summan av två perfekta kuber är x ^ 3 + y ^ 3. Formatet för factoring som är (x + y) (x ^ 2-xy + y ^ 2).
Hitta den största gemensamma faktorn. Den största gemensamma faktorn är det högsta antalet som kan delas av alla konstanter i polynomet. Till exempel i 4x-12 är den största gemensamma faktorn 4. Fyra dividerad med fyra är en, och 12 dividerad med fyra är tre. Genom att ta reda på de fyra förenklar uttrycket till 4 (x-3).
Hitta siffrorna som motsvarar produkten och summan av det andra och tredje uttrycket i polynomet. Så här faktorerar du trinomialer. Till exempel i problemet x ^ 2 + 6x + 9 måste du hitta två siffror som lägger till den tredje termen, nio och två siffror som multiplicerar till den andra termen, sex. Siffrorna är tre och tre, som 3 * 3 = 9 och 3 + 3 = 6. Polynomfaktorerna till (x + 3) (x + 3).
Kontrollera ditt svar. Multiplicera innehållet i svaret för att säkerställa att du har använt polynomet korrekt. Till exempel för svaret 4 (x-3) skulle du multiplicera fyra med x och sedan subtrahera fyra gånger tre, till exempel 4x-12. Eftersom 4x-12 är det ursprungliga polynomet är ditt svar rätt. För svaret (x + 3) (x + 3), multiplicera x med x, lägg sedan till x gånger tre, lägg sedan till x gånger tre och lägg sedan till tre gånger tre, eller x ^ 2 + 3x + 3x + 9, vilket förenklar till x ^ 2 + 6x + 9.